The Orange Mane -  a Denver Broncos Fan Community  

Go Back   The Orange Mane - a Denver Broncos Fan Community > Jibba Jabba > War, Religion and Politics Thread
Register FAQ Members List Calendar Chat Room Mark Forums Read



 
 
Thread Tools Display Modes
Prev Previous Post   Next Post Next
Old 08-13-2008, 09:35 AM   #11
alkemical
Guerrilla Ontologist
 
alkemical's Avatar
 
rorrim|mirror

Join Date: Apr 2001
Location: Future
Posts: 43,095

Adopt-a-Bronco:
Prima Materia
Default

http://www.sciencedaily.com/releases...0807144311.htm

Meta-materials Mimic Ice And Illuminate Why Water-ice Doesn't Fully Conform To Third Law Of Thermodynamics

The Third Law of Thermodynamics is on the minds of John Cumings, assistant professor of materials science and engineering at the University of Maryland's A. James Clark School of Engineering, and his research group as they examine the crystal lattice structure of ice and seek to define exactly what happens when it freezes.

"Developing an accurate model of ice would help architects, civil engineers, and environmental engineers understand what happens to structures and systems exposed to freezing conditions," Cumings said. "It could also help us understand and better predict the movement of glaciers."

Understanding the freezing process is not as straightforward as it may seem. The team had to develop a type of pseudo-ice, rather than using real ice, in order to do it.

Despite being one of the most abundant materials on Earth, water, particularly how it freezes, is not completely understood. Most people learn that as temperatures fall, water molecules move more slowly, and that at temperatures below 32 F/0 C, they lock into position, creating a solid—ice. What's going on at a molecular level, says Cumings, is far more complicated and problematic. For one thing, it seems to be in conflict with a fundamental law of physics.

The Third Law of Thermodynamics states that as the temperature of a pure substance moves toward absolute zero (the mathematically lowest temperature possible) its entropy, or the disorderly behavior of its molecules, also approaches zero. The molecules should line up in an orderly fashion.

Ice seems to be the exception to that rule. While the oxygen atoms in ice freeze into an ordered crystalline structure, its hydrogen atoms do not.

"The hydrogen atoms stop moving," Cumings explains, "but they just stop where they happen to lie, in different configurations throughout the crystal with no correlation between them, and no single one lowers the energy enough to take over and reduce the entropy to zero."

So is the Third Law truly a law, or more of a guideline?

"It's a big fundamental question," says Cumings. "If there's an exception, it's a rule of thumb."

Materials that violated the Third Law as originally written were found in the 1930s, mainly non-crystalline substances such as glasses and polymers. The Third Law was rewritten to say that all pure crystalline materials' entropy moves toward zero as their temperatures move toward absolute zero. Ice is crystalline—but it seems only its oxygen atoms obey the Law. Over extremely long periods of time and at extremely low temperatures, however, ice may fully order itself, but this is something scientists have yet to prove.

Creating an accurate model of ice to study has been difficult. The study of ice's crystal lattice requires precise maintenance of temperatures below that of liquid nitrogen (-321 F/-196 C), and also a lot of time: no one knows how long it takes for ice to ultimately reach an ordered state—or if it does at all. Experiments have shown that if potassium hydroxide is added to water, it will crystallize in an ordered way—but researchers don't know why, and the addition shouldn't be necessary due to the Third Law's assertion that pure substances should be ordered as they freeze.

To overcome these problems, scientists have designed meta-materials, which attempt to mimic the behavior of ice, but are created out of completely different substances. A previous material, spin ice, was designed from rare earth elements and had a molecular structure resembling ice, with magnetic atoms (spins) representing the position of hydrogen atoms. However, it did not always behave like ice.

*cont'd on site
alkemical is offline   Reply With Quote
 

Thread Tools
Display Modes



Forum Jump


All times are GMT -7. The time now is 01:07 PM.


Denver Broncos